SHUKLA SIR MATHS CLASSES MATHS : STRAIGHT LINE & CIRCLE

T.G.T / P.G.T

(SHUKLA SIR MOB - 7800731619)

1.	If A and B are the points $(-2, 2)$ and $(3, -1)$, then $AC = 2BC$ are :	the coordinates of the point	nt C on AB produced such that
	(a) $(8, -4)$ (b) $(3, 2)$	(c)(4,5)	(d) $(1/2, 1/2)$
2.	A straight line through the origin meets the paralle		
	respectively. Then the point O divides the segment		
	(a) 1 : 2 (b) 3 : 4	(c) 2 : 1	(d) 4 : 3
3.	The incentre of the triangle with vertices $(1, \sqrt{3})$, ((0, 0) and $(2, 0)$ is :	
	(a) $\left(1, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$	(c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$	$(\mathbf{d})\left(1,\frac{1}{\sqrt{3}}\right)$
4.	If $(0, 3)$, $(1, 1)$ and $(-1, 2)$ be the midpoints of the	sides of a triangle, its centre	oid is at :
	(a) $(0, 2)$ (b) $(0, 1)$	(c)(0,0)	(d) None of these
5.	Circumcentre of the triangle whose vertices are (1		
((a) $(3, 2)$ (b) $(2, 3)$	(c) $(3/2, 2/3)$	(d) (2/3, 3/2)
6.	The vertices of a triangle are $(6, 0)$, $(0, 6)$ and $(6, 6)$	b), the distance between its (c) $\sqrt{2}$	
7.	(a) $2\sqrt{2}$ (b) 2 Which of the following set of the points form an equ		(d) 1
/•	(a) $(1, 0), (4, 0), (7, -1)$	(b) $(0, 0), (3/2), (4/3), (4/3)$	(4/3, 3/2)
	(a) (1, 0), (1, 0), (1, 1) (c) (2/3, 0) (0, 2/3), (1, 1)	(d) None of these $(1, 2)$, $(1, 3)$	
8.	The triangle formed by the tangent to the curve $f($.		(1, 1) and the coordinates axes
	lies in the first quadrant. If its area is 2, then the val	ue of b is :	
	(a) 1 (b) 3	(c) - 3	(d) 1
9.	If A and B are two points on the line $3x + 4y + 15 =$	0 such that $OA = OB = 9$ u	nits, where O is the origin. The
	area of the triangle OAB is :		(d) No
10.	(a) $18\sqrt{2}$ (b) $2\sqrt{2}$ The perpendicular bisector of the line segment joini	(c) 7 ng $P(1,4)$ and $Q(k,3)$ has	(d) None of these
10.	value of k is:	$\lim_{k \to \infty} T(1, 4) $ and $\mathcal{Q}(k, 5) $ has	-intercept – 4. Then, a possible
	(a) - 4 (b) 1	(c) 2	(d) - 2
11.	Area of the triangle formed by the lines $7x - 2y +$		y + 2 = 0 is :
	(a) 8 (b) 14	(c) 16	(d) 18/7
12.	Let $A(2, 4), B(-3, -8)$ and $C(x, y)$ are three		a right angle and the area of
	$\Delta ABC = (41/2)$ units. The number of such points		
12	(a) 0 (b) 2 f_{x} is a small as y is y are in C.P. with the	(c) 4	(d) Infinite the points (x, y) (x, y) and
13.	If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. with the (x_3, y_3)	same common ratio, then	the points $(x_1, y_1), (x_2, y_2)$ and
	(a) lie on a straight line (b) lie on an ellipse	(c) lie on a circle	(d) are vertices of a triangle
14.	The three distinct points $(k, k + 1)$, $(k^2, 2k)$, $(k^2 + 1)$		-
	(a) All real values of k (b) no value of k		
15.	Vertices of a quadrilateral $ABCD$ are $A(1, 2), B(4)$		Then quadrilateral ABCD is :
	(a) Rhombus (b) Rectangle	(c) Square	(d) None of these
16.	If $P(1, 2)$, $Q(4, 6)$, $R(5, 7)$ and $S(a, b)$ are the ve		
17		(c) $a = 2, b = 3$	
17.	The locus of a point which moves such that the sur triangle is constant is a circle whose centre is at the		ices from the three vertices of a
	(a) Centroid of the triangle (b) Orthocentre		(d) None of these
	C		
ЪΝ	IIN I & C / NE & D COI NET C & NI DOI ICE CT	ATTONIATI ATTABAD)	Mob. 7800731619

1

18.	The line joining $(5, 0)$ to (of <i>P</i> is :	$(10\cos\theta, 10\sin\theta)$ is divide	d internally in the ratio 2 : 3	β at <i>P</i> . If θ varies, then the locus
19.	(a) a pair of straight lines A straight rod of length 9		(c) a straight line <i>B</i> always on the <i>X</i> and <i>Y</i> -a	(d) None of these xis respectively. Then the locus
	of the centroid of $\triangle AOB$ (a) $x^2 + y^2 = 3$		(c) $x^2 + y^2 = 1$	(d) $r^2 + v^2 - 81$
20.	•	(0) x + y = 9 s of a point from two perpe	· / ·	
	(a) square	(b) circle	(c) straight line	
21.	•	$n y = \cos x \cos (x+2) - \cos x \cos (x+2) - \cos x \cos (x+2) - \cos x \cos$		
		through $(0, -\sin^2 1)$ with s	lope 2	
	(b) a straight line passing(c) a parabola with verte	•		
	• / •	through the point $(\pi/2, -s)$	$\sin^2 1$) and parallel to the x-a	axis
22.		-	· •	(7, 3). The equation of the line
	1 0 0	(1, -1) and parallel to <i>PS</i>		
1 2		(b) $2x - 9y - 11 = 0$		
23.	The line $3x - 4y + 7 = 0$ is The equation of the line in		t/4 in the anticlockwise di	rection about the point $(-1, 1)$.
		(b) $7y - x - 6 = 0$	(c) $x - 7y + 8 = 0$	(d) $7x - y + 8 = 0$
24.	• •	· · · · ·	· · · ·	rotated through a given angle
	keeping the origin fixed,	the same line L has intercep	ots p and q . Then :	
	(a) $a^2 + b^2 = p^2 + q^2$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	(c) $a^2 + p^2 = b^2 + q^2$	(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
25.			y = 3 by a distance 4 units.	If its new position A' is in third
	quadrant then the co-ord (a) $(2 + 2a/2, 1 + 2a/2)$		(\mathbf{h}) (\mathbf{h}) (\mathbf{h}) (\mathbf{h}) (\mathbf{h}) (\mathbf{h})	
	(a) $(2 + 2\sqrt{2}, 1 + 2\sqrt{2})$ (c) $(2 - 2\sqrt{2}, 1 - 2\sqrt{2})$		(b) $(-2 + 2\sqrt{2}, -1 - 2^{-1})$ (d) None of these	N2)
26.				a direction parallel to the line
	x - 3y = 0 is :			I
	(a) $2\sqrt{10}$		(c) $2\sqrt{5}$	(d) None of these
27.				, $(0, 2)$ and $(1, 1)$ to a variable
	straight line is zero; then $(a)(1,1)$	line passes through a fixed (b)		are: $(d)(-1, 1)$
28.		(b) $(-1, -1)$ d fifth terms of an A P then		(0) (-1, 1) family of lines passing through
201		$b \neq 0, c \neq 0$):	$e^{i} + e^{i} + e^{i} = 0$ represents e	failing of mos passing through
	(a)(0,0)		(c) (-1, 2)	(d) None of these
29.	-		intersection of the lines $x - $	2=0 and $y+1=0$ and at a unit
	distance from the origin is			
30.		(b) $4x - 3y - 5 = 0$ 3q) $y = p - q$ for different		
50.	(a) $(3/2, 5/2)$			(d) $(2/5, 3/5)$
31.				x - y = 1 and $2x + 3y = 4$ and
	equidistant from the poir			
		(b) $14x + y - 20 = 0$	-	
32.		(2x+3y-13) + q(x-y+12) = 0		
33.	•	(b) $3x + 2y - 12 = 0$ and <i>b</i> the lines $(2a + b) x$	•	(d) None of these = 0 and $mx + 2y + 6 = 0$ are
55.	concurrent. Then $m =$	and v the miles $(2u + v) x$	(u + 50) y + (0 - 50)	-0 and $mx + 2y + 0 - 0$ ald
	(a) -2	(b) – 3	(c) - 4	(d) – 5
34.	If $4a^2 + 9b^2 - c^2 + 12 ab$	= 0, then the family of stra	ight lines $ax + by + c = 0$ i	s concurrent at :
	(a) (2, 3)	(b) (1, 2)	(c)(0,1)	(d) None of these

DDATIM LAS (NEAD COL NEL CANDOLICE STATION ALL ALLA BAD) Mob. 7800731619

35.	•	-2 and $y = mx$ are concurrent $y = mx$ are concurrent $y = mx$		
36.	(a) 0 For what values of α the p	(b) $\sqrt{2}$ point (α , 2) lies inside the t	(c) $2\sqrt{2}$ riangle formed by the lines	(d) None of these s $x = 0$, $x + y = 4$ and $x - y = 4$
	: (a) $0 < \alpha < 2$	(b) $0 < \alpha < 4$	(α) $2 < \alpha < 4$	(d) None of these
37.				es is bisected at A . Its equation
		(b) $4x + 3y = 24$	(c) $3x + 4y = 25$	(d) $x + y = 7$
38.		(4) be on the same side of (1)		
39.	(a) $7 < a < 11$ The incentre of a triangle i	(b) $b = 7$ is (1, 2) and the coordinate	(c) $a = 11$ s of two of its vertices are ((d) $a < 7$ or $a > 11$ (-1, 1) and (3, 2). Its inradius
	is equal to :			
40	(a) 1 The distance between the	(b) 2	(c) 3	(d) None of these
40.		e lines $x = y + 1 = 0$ and $2x$		
	(a) $\frac{3}{2}$	(b) $\frac{3\sqrt{2}}{2}$	(c) $\frac{3}{2\sqrt{2}}$	(d) $\frac{5}{2}$
41.	_		of a $\triangle ABC$ are $(2, -1)$, $(1, $	3) and $(-1, -2)$ respectively.
	The slope of the altitude th (a) 2	0	(c) 1/3	(d) 5/2
42.	(a) 3 The orthocentre of the tri	(b) - 3 iangle whose sides are give		(d) $3/2$ y - 4 = 0 and $4x + 3y = 10$ is :
	(a) (- 3, - 1)		(c) (3, 1)	(d) (1, 2)
43.		(4, 0) are the vertices of a tr	riangle then equation of int	ernal bisector of $\angle B$ is given
	by: (a) $2x + y + 3 = 0$	(b) $2x + y - 3 = 0$	(c) $2r - v + 3 = 0$	(d) None of these
44.	• • •	· · · · ·	•	bisector of the angle $\angle ABC$
	:			
45.	· · ·	(b) $x - y + 1 = 0$ and $R - (3, 3\sqrt{3})$ be three p		(d) $x + 1 = 0$ the bisector of the angle <i>PQR</i>
ч.,	is:	and $N = (3, 3, 3)$ be three p	onits. Then the equation of	the disector of the angle I QK
	(a) $\frac{\sqrt{3}}{2} x + y = 0$	(b) $r + \sqrt{2}v = 0$	(c) $\sqrt{2}x + y = 0$	(d) $r + \frac{\sqrt{3}}{\sqrt{3}} v = 0$
16	-			(d) $x + \frac{1}{2}y = 0$
46.	(a) $(\sqrt{5} - 1) y = (\sqrt{5} - 3)$	e obtuse angle between the	(b) $(\sqrt{5} + 1) y = (\sqrt{5} + 3)$) x
	(c) $(3 - \sqrt{5}) y = (\sqrt{5} - 1)$.	x	(d) None of these	
47.		are A (7, 3), B (0, 2) and C		-
48.	(a) Median Shortest distance of bisec	(b) Altitude tor of $xy = 0$ from the point	(c) Angular bisector t $(3, 0)$ is :	(d) None of these
40,	(a) 1	(b) $3\sqrt{2}/2$	(c) $1/\sqrt{2}$	(d) $(2/3) \sqrt{2}$
49.		<u> </u>	the lines $3x - y + 1 = 0$ and	x+2y-5=0 containing the
	origin. Then 'a' belongs to $(a)(1,3)$		(c) $(0, 1/3) \cup (1, \infty)$	(d) $(0, 1/3) \cup (-\infty, -3)$
50.				image of B by the line mirror
	y = 0 is the point (α , β), then :		
51		(b) $\alpha = 0, \beta = 0$		
51.	(a) $(-1/2, -1/2)$	age of the origin O with res (b) $(-2, -2)$	(c) $(1, 1)$	(d) (-1, -1)
52.		oot of the perpendicular from		
50	(a) (-1, 1)	(b) $(1, -1)$	(c)(1,1)	(d)(-1,-1)
53.	A ray coming from the point A The co-ordinate of point A	_	t A on the x-axis and then particular the x -axis and the particular the the particular term of the term of	asses through the point $(1, 8)$.
		· ·		

DDATING LAS (NIE AD COL NEL CAN'T DOLLOE STATION ALL ATTABAD) Mob. 7800731619

(a)
$$\left(\frac{x}{3}, 0\right)$$
 (b) (5,0) (c) $\left(\frac{x}{3}, 0\right)$ (d) $\left(\frac{9}{2}, 0\right)$
54. Two consecutive sides of a parallelogram are $3x - y = 1$ and $x + y = 3$. If equation to one diagonal is
 $3x + y = 1$, the equation to the other diagonal is:
(a) $y - 2 = 0$ (b) $y - 3x = 10$ (c) $x - 4 = 0$ (d) None of these
(d) None of these
55. Area of the parallelogram formed by the lines $y = nx$, $y = nx + 1$, $y = nx$ and $y = nx + 1$ equals :
(a) $\frac{|a|+a|}{|a|-n|}$ (b) $\frac{2}{|a|+n|}$ (c) $\frac{1}{|m|+n|}$ (d) $\frac{1}{|m|-n|}$
56. Number of integral point (coordinates) in the triangle formed by the vertices (0, 0) (21, 0) and (0, 21) is :
(a) 231 (b) 210 (c) 190 (d) (72) (d) (2)
57. If $x^2 - kxy + y^2 + 2y + 2 = 0$ denotes a pair of straight lines then $k =$
(a) $1/\sqrt{2}$ (b) $2\sqrt{2}$ (c) $\sqrt{2}$ (d) $2 =$
58. The angle between the fines $y^2 - 2y$; cosee $0 + x^2 = 0, 0 < 0 \le \pi/2$, is:
(a) $n/2$ (b) $0 = 0'$ (c) $(n/2) - 0$ (d) None of these
59. The distance between the lines represented by $2x^2 + 4xy + 2y^2 - x - y - 1 = 0$ is:
(a) $3/2\sqrt{2}$ (b) $3\sqrt{1/3}$ (c) $4\sqrt{1/3}$ (d) $5\sqrt{1/3}$ (d) $10 = 0'$ (fuse
60. If $9x^2 + 2kxy + 4y^2 + 4x^2 + 4x^2 + 3x^2 = 0$ (e) $\sqrt{4\sqrt{1/3}}$ (f) $3\sqrt{1/3}$ (f) $(5\sqrt{1/3} - 1)$ (d) None of these
61. The equation of the line passing through the point of interaction of the lines given by the equation, $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0$ and perpendicular to the line $x + y = 10$ is;
(a) $2\sqrt{3}$ (b) $3\sqrt{1/3}$ (c) $(-1/\sqrt{1/3})$ (d) $(-1/\sqrt{3})$
62. If the lines joining the origin to the points of interaction of $y = mx + 1$ and $2x^2 + 3x^2 = 1$ are perpendicular to
each other, then $m =$
(a) $+2^2$ (b) $\pm\sqrt{2}$ (c) $\pm 1/2$ (d) $\pm 3/2$
63. The line parallel to the *x*-axis and passing through the intersection of the lines $ax + 2by + 3b = 0$ and $bx - 2ay - 3a = 0$, where $(a, b) \neq 0$, (0) is :
(a) $a(b - \frac{1}{3})$ (b) $(1/\sqrt{2})$ (c) $((-1, -2)$ (d) $(-1, 2)$
64. If non-zero numbers a, b, c are in HP, then the straight line $\frac{x}{a} + \frac{x}{a} = 0$ and $\frac{x}{a} + \frac{x}{a} = -1$
(c)

- 69. If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals : (a) 1 (b) - 1(c) 3 (d) - 3**70.** If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1 - a_2) x + (b_1 - b_2) y + (b_2 - b_2) y + ($ c = 0, then t e value of 'c' is : (a) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$ (b) $a_1^2 - a_2^2 + b_1^2 - b_2^2$ (c) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$ (d) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ **71.** If $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$ then condition of parallel line is : (c) a + b = 0(b) $h^2 = ab$ (a) $\Delta = 0$ (d) None of these 72. If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, then : (a) p = q(b) p = -q(c) pq = 1(d) pq = -1**73.** The equation $ax^2 + by^2 + 2hxy$ will represent a pair of perpendicular lines then : (b) $h^2 = ab$ (a) a + b = 1(c) a + b = 0(d) None of these 74. The condition for the expression $ax^2 + 2hxy + by^2 + 2yx + 2fy + c = 0$ be resolved into linear factor is : (a) $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$ (b) $\begin{vmatrix} a & h & f \\ h & b & g \\ f & g & c \end{vmatrix} = 0$ (c) $\begin{vmatrix} a & h & g \\ h & f & b \\ g & c & f \end{vmatrix} = 0$ (d) None of these **75.** If $ax^2 + 2bxy + by^2 + 2gx + 2fy + c = 0$ represent to a pair of parallel lines, then the distance between then : (b) $2\sqrt{\frac{g^2 - ac}{a(a+b)}}$ (c) $\sqrt{\frac{g^2 + ac}{a(a+b)}}$ (d) $2\sqrt{\frac{g^2 + ac}{a(a+b)}}$ (a) $\sqrt{\frac{g^2 - ac}{r^2 + c^2}}$ 76. The distance between the pair of line represented by the equation $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ is : (c) $\sqrt{\frac{5}{2}}$ (d) $\frac{1}{\sqrt{10}}$ (a) $\frac{15}{\sqrt{10}}$ (b) $\frac{1}{2}$ 77. The equation $x^3 - 3xy + xy^2 + 3x - 5y + 2 = 0$. When λ whom λ is real number represent pair of straight lines. If θ is the angle between lines, then $\csc^2 \theta$ equal to : (c) 10 (a) 3 (b) 4(d) 100 **78.** $\frac{1}{ab'} + \frac{1}{ba'} = 0$ then lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a'} + \frac{y}{b'} = 1$ are : (a) parallel (b) inclined at 60° to each other (c) perpendicular to each other (d) None of these **79.** A variable straight line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 10 the locus of the middle point of the line which is intercept between the axes is : (c) x + y = 5(b) x + y = 0(a) x + y = 10(d) x + y = 180. The line L given by $\frac{x}{5} + \frac{y}{h} = 1$ passes through the point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is : (a) $\frac{23}{\sqrt{17}}$ (b) $\frac{23}{\sqrt{15}}$ (d) $\frac{17}{\sqrt{15}}$ (c) $\sqrt{17}$ 81 The foot of perpendicular of point (1, 2) on the one straight line 2x + 3y + 4 = 0 is : (a) $\left(\frac{-11}{3} - \frac{10}{13}\right)$ (b) $\left(\frac{-11}{13}, \frac{10}{3}\right)$ (c) $\left(\frac{10}{3}, \frac{1}{2}\right)$ (d) None of these
- 82. The equation of the line through the point (2, 3) such that its segment intercepted by the lines 3x + 4y = 1, 3x + 4y = 5 is of length 1 is :

DDALIMIAG (NEAD COLNEL CANDOLICE STATION ALL ALLA BAD) Mob. 7800731619

83.	+ 2 = 0 (b) $x - 2 = 0$ The points $(-a, -b)$, $(0, 0)$, (a, b) and (a^2, ab) are		(d) $y - 3 = 0$
05.	(a) Collinear	(b) vertices of a rectang	le
	(c) vertices of a parallelogram	(d) none of the above	
84.	The straight lines $x + y = 0$, $3x + y - 4 = 0$, $x + 3y - 4 = 0$		ich is :
	(a) isosceles	(b) equilateral	
	(c) right angled	(d) None of these	
85.	The three lines $px + qy + r = 0$, $qx + ry + p = 0$, rx		
	(a) $p + q + r = 1$	(b) $p^2 + q^2 + r^2 = pr + r$	rq
	(c) $p^3 + q^3 + r^3 = 3pqr$	(d) None of the above	
86.	The orthocentre of the triangle formed by the lines	x = 0, y = 0 and x + y = 1 i	s :
	$(a)\left(\frac{1}{2},\frac{1}{2}\right) \qquad \qquad (b)\left(\frac{1}{3},\frac{1}{3}\right)$	(c)(0,0)	(d) $\left(\frac{1}{4},\frac{1}{4}\right)$
87.	The number of integer values of <i>m</i> , for which the <i>x</i> -co	oordinate of the point of Int	ersection of the lines $3x + 4y = 9$
	and $y = mx + 1$ is also an integer, is :	1	
	(a) 2 (b) 0	(c) 4	(d) 1
		× /	
88.	Let $0 < \alpha < \frac{\pi}{2}$ be a fixed angle. If $P = (\cos \theta, \sin \theta)$) and $Q = ((\cos \alpha - \theta), \sin \theta)$	$(\alpha - \theta)$ then θ is obtained from
	<i>P</i> by :		
	(a) clockwise rotation around origin through an any	zleα	
	(b) anti clock wise rotation around origin through a		
	(c) reflection in the line through origin with slope tar	•	
		~	
	(d) reflection in the line through origin with slope ta	$\ln \frac{\alpha}{2}$	
89.	Consider three points $P = (-\sin(\beta - \alpha), -\cos\beta)$) $Q + (\cos{(\beta - \alpha)}) - \sin{(\beta - \alpha)}$	(b) and $R = (\cos (\beta - \alpha + \theta))$
0,1	sin $(\beta - \theta)$, where $0 < \alpha$, β , $\theta < \pi/4$. Then :), <u>c</u> (000 (p 00), 011	p)
	(a) P lies on the line segment RQ	(b) Q lies on the segmen	nt PR
	(c) <i>R</i> lies on the line segment <i>QP</i>	(d) P, Q, R are non-colli	
90.	The equation of second degree $x^2 + 2\sqrt{2}xy + 2y^2 + 2\sqrt{2}xy + 2y^2$		
201	distance between them is :	ix + 1 (2) + 1 = 0 represe	nts a pair of straight mes. The
	(a) 4 (b) $\frac{4}{\sqrt{3}}$	(c) 2	(d) $2\sqrt{3}$
91	The angle between the pair of straight lines $y^2 \sin^2$	$A = rv \sin^2 A + r^2 (\cos^2 A - 1)$	$1) - 1$ is \cdot
91.	The angle between the pair of straight lines $y^2 \sin^2$		1) = 1, is :
91.			
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$	(c) $\frac{2\pi}{3}$	(d) None of these
91. 92.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2:	(c) $\frac{2\pi}{3}$	(d) None of these
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$	(c) $\frac{2\pi}{3}$	(d) None of these
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to :	(c) $\frac{2\pi}{3}$ $x^2 + 5xy + 3y^2 + 6x + 7y + 4$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal
92.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to : (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7
92.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x = 0$ will be mutually perpendicular, if :	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$
92.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x = 0$ will be mutually perpendicular, if: (a) $g(a_1 + b_1) = g_1(a + b)$	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + b)$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1)
92. 93.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x = 0$ will be mutually perpendicular, if: (a) $g(a_1 + b_1) = g_1(a + b)$ (c) $a + b = gg_1(a_1 + b_1)$	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + d_{2}) = a_{1}g_{1} = bg + b_{1}$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1
92.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x=0$ will be mutually perpendicular, if: (a) $g(a_1+b_1) = g_1(a+b)$ (c) $a+b = gg_1(a_1+b_1)$ Out of two straight lines represented by an equation	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + d_{1}) + 2g_{2}(a_{1} + d_{2}) + 2g_{3}(a_{1} + d_{2}) + 2g_{$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 Fone is $y = mx$, then :
92. 93. 94.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x=0$ will be mutually perpendicular, if: (a) $g(a_1+b_1) = g_1(a+b)$ (c) $a+b = gg_1(a_1+b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + d_{1}) = b_{1}g_{1} = b_{2}g_{1} + b_{1}g_{1}$ (c) $ag = a_{1}g_{1} = bg + b_{1}g_{1}$ (c) $h + 2am + by^{2} = 0$, iff (c) $h + 2am + bm^{2} = 0$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 Fone is $y = mx$, then :
92. 93.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x=0$ will be mutually perpendicular, if: (a) $g(a_1+b_1) = g_1(a+b)$ (c) $a+b = gg_1(a_1+b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$ The angle between the straight lines is $x^2 - y^2 - 2y$	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + d_{2}) = a_{1}g_{1} = bg + b_{1}$ (c) $ag = a_{1}g_{1} = bg + b_{1}$ (c) $h + 2am + by^{2} = 0$, iff (c) $h + 2am + bm^{2} = 0$ -1 = 0:	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 fone is $y = mx$, then : (d) $b + 2hm - am^2 = 0$
92. 93. 94. 95.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+ 2g_1x = 0$ will be mutually perpendicular, if: (a) $g(a_1 + b_1) = g_1(a + b)$ (c) $a + b = gg_1(a_1 + b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$ The angle between the straight lines is $x^2 - y^2 - 2y$ (a) 90° (b) 60°	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + d_{1}) = b_{1}g_{1} = b_{2}g_{1} + b_{1}g_{1}$ (c) $ag = a_{1}g_{1} = bg + b_{1}g_{1}$ (c) $h + 2am + by^{2} = 0$, iff (c) $h + 2am + bm^{2} = 0$	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 Fone is $y = mx$, then :
92. 93. 94.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x = 0$ will be mutually perpendicular, if: (a) $g(a_1 + b_1) = g_1(a + b)$ (c) $a + b = gg_1(a_1 + b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$ The angle between the straight lines is $x^2 - y^2 - 2y$ (a) 90° (b) 60° The equation $y^2 - x^2 + 2x - 1 = 0$ is :	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + a_{1})$ (c) $ag = a_{1}g_{1} = bg + b_{1}$ (c) $h + 2am + by^{2} = 0$, iff (c) $h + 2am + bm^{2} = 0$ -1 = 0: (c) 75°	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 fone is $y = mx$, then : (d) $b + 2hm - am^2 = 0$
92. 93. 94. 95.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x=0$ will be mutually perpendicular, if: (a) $g(a_1+b_1) = g_1(a+b)$ (c) $a+b = gg_1(a_1+b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$ The angle between the straight lines is $x^2 - y^2 - 2y$ (a) 90° (b) 60° The equation $y^2 - x^2 + 2x - 1 = 0$ is : (a) hyperbola	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + (d) ag = a_{1}g_{1} = bg + b_{1})$ on, $ax^{2} + 2hxy + by^{2} = 0$, if (c) $h + 2am + bm^{2} = 0$ -1 = 0: (c) 75° (b) ellipse	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 fone is $y = mx$, then : (d) $b + 2hm - am^2 = 0$ (d) 36°
92. 93. 94. 95.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ If the angle between the two lines represented by 2: to: (a) $\frac{1}{2}$ (b) 1 The line joining origin and point of intersection of $+2g_1x = 0$ will be mutually perpendicular, if: (a) $g(a_1 + b_1) = g_1(a + b)$ (c) $a + b = gg_1(a_1 + b_1)$ Out of two straight lines represented by an equation (a) $a + 2hm + bm^2 = 0$ (b) $b + 2hm + am^2 = 0$ The angle between the straight lines is $x^2 - y^2 - 2y$ (a) 90° (b) 60° The equation $y^2 - x^2 + 2x - 1 = 0$ is :	(c) $\frac{2\pi}{3}$ $x^{2} + 5xy + 3y^{2} + 6x + 7y + 4$ (c) $\frac{1}{5}$ curves $ax^{2} + 2hxy + by^{2} + 2$ (b) $g(a + b) = g_{1}(a_{1} + (d) ag = a_{1}g_{1} = bg + b_{1})$ on, $ax^{2} + 2hxy + by^{2} = 0$, if (c) $h + 2am + bm^{2} = 0$ -1 = 0: (c) 75° (b) ellipse (d) rectangular hyperbol	(d) None of these = 0 is $\tan^{-1}(m)$, then <i>m</i> is equal (d) 7 $2gx = 0$ and $a_1x^2 + 2h_1xy + b_1y^2$ b_1 g_1 fone is $y = mx$, then : (d) $b + 2hm - am^2 = 0$ (d) 36°

	(are) always rational poir	nt(s)?		
	(a) centroid	(b) incentre	(c) circumcentre	(d) orthocentre
98.	If (α, α^2) lies inside the	triangle formed by the lines	32x + 3y - 1 = 0, x + 2y - 1	3 = 0, 5x - 6y - 1 = 0, then :
		(b) $\alpha + 2\alpha^2 - 3 < 0$		
99.	-	-	nds an angle of measure 45	5° at the major segment of the
	circle, then the value of <i>n</i>			
	(a) 2	(b) 1	(c) - 1	(d) none of these
		<u>CIRC</u>	<u>LE</u>	
100 т	The line joining the centres	s of the circles $x^2 + y^2 - 2x$	$4v + 1 = 0$ and $2x^2 + 2v^2$.	-2y + 4x + 1 = 0 is given by :
	a) $x - y = 3$		(c) $5x + 4y = 3$	
· ·	· ·	8y - 15 = 0 are tangents to		
	a) 5/2	(b) 5/4	(c) 5	(d) 10
102. T	he number of points with	integral coordinates that are	e interior to the circle $x^2 + y$	$v^2 = 17$ is :
	a) 45	(b) 49	(c) 53	(d) 57
103. T	he equation of the circle pa	assing through $(1, 0)$ and $(0$		
	a) $2x^2 + 2y^2 - 2x - y = 0$		(b) $2x^2 + 2y^2 - x - 2y =$	0
	c) $x^2 + y^2 - x - y = 0$		(d) $x^2 + y^2 + x + y = 0$	
		1), $(1, 3)$, $(3, 1)$ and $(k, 3k)$		
	a) No value of k		(b) A unique value of k	
	c) Exactly two values of k		(d) Infinite of values of k	
		d in the circle $x^2 + y^2 = 25$. If	Q and R have coordinates	(3, 4) and $(-4, 3)$ respectively,
	then $\angle QPR$ is equal to :			
	a) $\pi/2$	(b) $\pi/3$	(c) $\pi/4$	(d) $\pi/6$
				ntre at the origin. On the circle
				eting its motion on C_k , particle
II. (1	loves to C_{k+1} in the radical	direction. The motion of the	be x exister the first time.	manner. The particle starts at $a = \frac{1}{2}$
			(c) 7	on the circle C_n then $n = \dots$ (d) 3
	1) 5 Fabscissae of two points A			d their ordinates are the roots
		0 then equation of the circle		a their ordinates are the roots
(2	a) $x^2 + y^2 + 5x + 5y = 0$	o then equation of the ener	(b) $x^2 + y^2 + 5x + 5y + 2$	2 = 0
	(c) $x^2 + y^2 + 5x + 5y - 2 =$	0	(d) $x^2 + y^2 + 5x + y - 4$	
•				d their ordinates are the roots
		$^{2} = 0$. The centre of the circ		
	(a, p)	(b) (a, b)	(c) $(-a, -p)$	(d) (p, q)
109. E	quation of tangent/tangen	ts from the point $(-1, -3)$ t	o the circle $x^2 + y^2 = 1$ is given by	ven by:
(8	a) $4x - 3y - 5 = 0$		(b) $4x - 3y - 5 = 0$ and	x + 1 = 0
· · ·	c) $4x - 3y - 5 = 0$ and $y + 3y - 5 = 0$		(d) $4x - 3y + 5 = 0$ and	
		ig through the points $(0, 0)$,		
· ·			(c) $(1/2, 1/2)$	
			ally the circle $x^2 + y^2 - 6x$	-6y + 14 = 0 and also touches
	the y-axis is given by the equation $y = \frac{1}{2}$	lation:	(1) (2) (1) (1)	0
	a) $x^2 - 6x - 10y + 14 = 0$		(b) $x^2 - 10x - 6y + 14 =$	
	c) $y^2 - 6x - 10y + 14 = 0$	1 0 - 1 2 - 2 4	(d) $y^2 - 10x - 6y + 14 =$	= 0
	•	$4y + 1 = 0$ and $x^2 + y^2 - 4x$	•	(d) Noither intersect nor
,		(b) Touch internally	(c) Touch externally	(d) Neither intersect nor
	buch Sthe two circles $(r = 1)^2 +$	$(y-3)^2 = r^2$ and $x^2 + y^2 - 8$.	$x \perp 2y \perp 8 = 0$ intersect in	two distinct points than .
	a) $2 < r < 8$			(d) $r < 2$
	·/ ·	$(b)^{2} = c^{2}$ and $(x - b)^{2} + (y - b)^{2}$		(u) i > 2
(8	2c = a - b	(b) $2c^2 = (a-b)^2$	(c) $c^2 = 2 (a - b)^2$	(d) $c^2 = (a+b)^2$
י) האמת		(0) 20 = (u - b)	$\mathbf{U} = \mathbf{U} \left(\mathbf{U} = \mathbf{U} \right)$	Moh. 7800731619
		urshasing naveDDE (http://w		

	$(y+2)^2 = r^2$ intersect each other in the two distinct points for
(a) $r < 3$ (b) $r > 7$	
	$y^2 - 2x + 4y - 4 = 0$ and $x^2 + y^2 - 8x - 4y + 16 = 0$ is :
(a) 1 (b) 2	(c) 3 (d) 4 $x^2 + x^2 = 4 \text{ and } x^2 + x^2$ for $8x = 24$ is
117. The number of common tangents to the circles $\frac{1}{2}$	
(a) 0 (b) 1 118. The equation of the tangent to the circle $x^2 + y^2$.	(c) 3 (d) 4 4x - 6y = 0 parallel to $x + y - 8 = 0$ is :
	(c) $x + y = 5 - \sqrt{2}$ (d) $x + y = 5 - \sqrt{26}$
119. The pole of the straight line $9x + y - 28 = 0$ with (a) (2 - 1)	
	(c) $(3, -1)$ (d) $(-3, 1)$ + $6x + 6y = 2$ mosts the streight line $5x - 2y + 6 = 0$ at a point
	+ 6x + 6y = 2 meets the straight line $5x - 2y + 6 = 0$ at a point
Q on the y-axis, then the length of PQ is : (a) 4 (b) $2\sqrt{5}$	(c) 5 (d) $3\sqrt{5}$
	C_2 be the circle $x^2 + y^2 + 6x + 2y + 1 = 0$; then polar of the point
(1, 1) with respect to circle C_1 :	z_2 be the encies $x + y + 6x + 2y + 1 = 0$, then point of the point
(a) Does not intersect C_2	(b) Touches C_2
(c) Intersect C_2 in two distinct points	(d) None of these
	Section of the lines $2x + 3y + k = 0$ and $\lambda x + 2y + 1 = 0$ with axes
concyclic :	
(a) $\lambda = 3, k = 3$ (b) $\lambda = 2, k = 2$	(c) $\lambda = 2, k = 3$ (d) $\lambda = 3$, for any value of k
123. If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$	
(a) $a_1b_1 = a_2b_2$ (b) $a_1a_2 = b_1b_2$	(c) $a_1 + a_2 = b_1 + b_2$ (d) $a_1 - a_2 = b_1 - b_2$
	ntact of tangents from the point (10, 3) to the circle
$x^2 + y^2 - 2x + 4y - 1 = 0$ is :	
(a) $99/\sqrt{109}$ (b) $99/\sqrt{106}$	(c) $97/\sqrt{109}$ (d) $100/\sqrt{106}$
	ngents from the point (4, 5) to the circle $(x-2)^2 + (y-1)^2 = 16$
with a pair of radii where tangents touch the circle	
(a) 2 (b) 4	(c) 8 (d) 16
126. The length of the chord cut-off by the line $2x + 3$	
35	$\sqrt{140}$
(a) $\sqrt{\frac{35}{13}}$ (b) $\sqrt{\frac{70}{13}}$	(c) $\sqrt{\frac{110}{13}}$ (d) None of these
127. Length of chord on the line $4x - 3y - 10 = 0$ cut	t off by the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ is :
(a) 10 (b) 6	(c) 12 (d) None of these
128. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an inte	
(a) 1 (b) 3	(c) 4 (d) 7
129. The chords of contact of the pair of tangents	drawn from each point on the line $2x + y = 4$ to the circle
$x^2 + y^2 = 1$, pass through the point	
$(1 \dots)$ (-1)	$(1 \ 1)$
(a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(-2, \frac{1}{4}\right)$	(c) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) None of these
130. If two distinct chords, drawn from the point (p, c)	q) on the circle $x^2 + y^2 - px - qy = 0$ (where $pq \neq 0$) are bisected
by the <i>x</i> -axis, then :	
	(c) $p^2 < 8q^2$ (d) $p^2 > 8q^2$
	m (1, -1) to the circle $(x + 2)^2 + (y - 1)^2 = 9$ then sin $\theta =$
	(c) 12/13 (d) 1
132. The locus of midpoints of the chords of the circle	$e^{x^2} + y^2 = 4$ which subtends a right angle at the centre is :
	(c) $x^2 + y^2 = 2$ (d) $x - y = 0$
133. The locus of point of intersection of perpendicula	
	(c) $x^2 - y^2 = 12$ (d) $x^2 - y^2 = 6\sqrt{2}$
	$x^{2}-2x=0$ is AB. Equation of the circle with AB as a diameter is
(a) $x^2 + y^2 - x - y = 0$ (b) $x^2 + y^2 - 2x - 2$	$2y = 0$ (c) $x^2 + y^2 + x + y = 0$ (d) $x^2 + y^2 + 2x + 2y = 0$
DD A HIM TA C / NE A D COT NET C A NH DOT TOE	ГСТАТІОЛІ АТТАВАД) Мов. 7800731619

135. The angle between the pair	•	•	· · · ·
(a) $\pi/3$ 136 The angle between a pair of	(b) $\pi/6$	(c) $\pi/2$	(d) $\pi/4$
136. The angle between a pair of $x^2 + y^2 + 4x - 6y + 9 \sin^2 \alpha$			ne point P is ·
(a) $x^2 + y^2 + 4x - 6y + 4 =$	0	(b) $x^2 + y^2 + 4x - 6y - 4y$	9 = 0
(c) $x^2 + y^2 + 4x - 6y - 4 =$	0	(d) $x^2 + y^2 + 4x - 6y + 4x - 6y + 6y$	9 = 0
137. If the circle $x^2 + y^2 + 2x + 2$			
-3	-3	$\sim 2^{3}$	(1) 2 3
(a) 2 or $\frac{-3}{2}$	(b) – 2 or $\frac{-3}{2}$	(c) 2 or $\frac{1}{2}$	(d) $-2 \text{ or } \frac{1}{2}$
138. Two circles of equal radius (a) 1	<i>r</i> cut orthogonally. If their o (b) 2	centres are (2, 3) and (5, 6 (c) 3	(b) then $r =$ (d) 4
139. If a circle passes through the locus of its centre is :	the point (a, b) and cuts the	circle $x^2 + y^2 = k^2$ orthogo	onally, then the equation of the
(a) $2ax + 2by - (a^2 + b^2 + b^2)$	$k^{2}) = 0$	(b) $2ax + 2by - (a^2 - b)$	$k^2 + k^2) = 0$
(c) $x^2 + y^2 - 3ax - 4by + (a^2 - 3ax - 4by) + (a^2 - 3ax - 4by)$,		
140. The radical centre of the the			diameter is :
(a) Orthocentre	(b) Circumcentre	(c) Incentre	(d) Centroid
141.Equation of the circle which		the circles $x^2 + y^2 - 2x - 4$	$4y + 4 = 0, \ 2x^2 + 2y^2 - 2x - 11y$
$+ 13 = 0, 3x^2 + 3y^2 - 3x -$	~	$A(-)(-, 1)^2 + (-, 2)^2$	
(a) $(x-2)^2 + (y-3)^2 = 1$ 142 (2, 1) and (-5, -6) are the 1	-	-	
142. (2, 1) and $(-5, -6)$ are the l to the system then $k =$	mining points of a system of	i co-axiai circies. Il circie.	$x^2 + y^2 - 0x - 0y + k = 0$ belongs
(a) -1	(b) -8	(c) –5	(d) - 7
143.One of the limiting points of			
$x^2 + y^2 - 8y + 14 = 0$ is :	,	U	
(a) $(-2, 3)$	(b) (-1, 1)	(c) $(4, -6)$	(d) None of these
144.If the circumference of the			
q equals:			
(a) 0	(b) 25		(d) – 25
145. If the equations of four circl circles is :			
(a) 4 ($\sqrt{2}$ + 1)	(b) 4 $(\sqrt{2} - 1)$		
146. The intercept on the line $y =$	x by the circle $x^2 + y^2 - 2x$	= 0 is AB. Equation of the	circle with AB as a diameter is
: (a) $x^2 + y^2 + x + y = 0$	(b) $x^2 + x^2 + y = 0$	$(a) x^2 + x^2 + x = 0$	(d) None of these
147. The line $y = mx + c$ intersection	(b) $x + y - x - y = 0$	(c) $x + y + x - y = 0$ he two real distinct points	(d) None of these
(a) $-r \sqrt{1+m^2} < c < r \sqrt{1+m^2}$		(b) $-c \sqrt{1-m^2} < r < c$	
(a) $= r \sqrt{1 + m^2} < c < r \sqrt{1 + m^2}$ (c) $= r \sqrt{1 - m^2} < c < r \sqrt{1 + m^2}$		•	$\sqrt{1+m^2}$
		(d) None of these	
148. If the distances from the ori lengths of the tangents draw			
(a) A.P.	(b) G.P.	(c) H.P. $y = a$ and $y = a$	(d) None of these
(d) / X.1.			
	<u>QUESTION BASE</u>	<u>D ON INTERMEDI</u>	<u>IATE</u>
149. If the line passes through (-4)	4, 5) and (- 5, 7), also pass th	hrough (l, m) then :	
(a) $l + m + 3 = 0$	(b) $2l + m + 3 = 0$	(c) $l + m - 3 = 0$	(d) None of these
150. The length of the sum of squa	are at intercept cut by the line	$x \sin \alpha + y \cos \alpha = \sin 2\alpha$	α on the axis is :
(a) 1 unit	(b) 2 unit	(c) 3 unit	(d) 4 unit
151. The distance between the para	allel lines $ax + by + c = 0$ and	K(ax + by) + d = 0 is :	
c-d	$C - (d/_{\nu})$	Kc-d	
(a) $\sqrt{a^2 + b^2}$	(b) $\frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}$	(c) $\sqrt{a^2 + b^2}$	(d) None of these
(a) $\frac{c-d}{\sqrt{a^2+b^2}}$	$\frac{\nabla u + v}{ \mathbf{D} \mathbf{T} - \mathbf{C} + \mathbf{V} }$	TION AT T ATTA BAD)	Mob. 7800731619
	urchasing poveDDE (http://w		

152. The distance from the origin to the line which pass through $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ is *P* then $\frac{P}{\alpha} =$:

(a)
$$\cos \frac{\alpha - \beta}{2}$$
 (b) $\sin \frac{\alpha - \beta}{2}$ (c) $2\cos \frac{\alpha - \beta}{2}$ (d) None of these

153. The x-coordinate of incentre of the triangle, whose sides mid point is (0, 1), (1, 1) and (1, 0) is :

(b) $2 - \sqrt{2}$ (c) $1 + \sqrt{2}$ (d) $1 - \sqrt{2}$ (a) $2 + \sqrt{2}$ **154.** In a triangle ABC, D is the mid-point of BC then $AB^2 + AC^2 =$ (a) $AD^2 + DC^2$ (b) 2 $(AD^2 + DC^2)$ (c) 3 $(AD^2 + DC^2)$ (d) None of these **155.** If the point (a, b) (a', b') and (a - a', b - b') are collinear then : (a) aa' = bb'(b) ab' = a'b(c) a'b' = ab(d) None of these **156.** The equation of line passes through (3, 4) and the sum of intercepts on axis is 14 is : (b) 3x + 4y = 24(a) 4x - 3y = 24(c) 4x + 3y = 24(d) None of these **157.** If the lines lx + my + n = 0, mx + ny + l = 0 and nx + ly + m = 0 are concurrent then : (a) l + m + n = 0(b) l - m + n = 0(c) l + m - n = 0(d) l + m + n = 1**158.** The angle between the straight lines ax + by + c = 0 and (a + b)x - (a - b)y = 0 is : (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ **159.** The product of two perpendiculars to the line $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ from the points $(\pm\sqrt{a^2-b^2},0)$ is (a) a^2 (b) b^2 (c) $a^2 - b^2$ (d) None of these 160. If we draw a circumcircle $x^2 + y^2 + 2gx + 2fy + c = 0$ of square. Then the side of square (if r is the radius of circle) is : (c) $\frac{1}{2}r$ (b) $r\sqrt{2}$ (a) *r* (d) None of these <u>PAIRS OF STRAIGHT</u>S **161.** If the equation $9x^2 + 12xy + ky^2 = 0$ represents at coincident then find the value of k is : (a) 3 (b) 4 (c) - 4(d) None of these **162.** If the equation $3x^2 - 8xy + by^2 = 0$ represents of perpendicular to the line. Then find the value of b is : (b) - 3(a) 3 (c) 0(d) None of these **163.** Find the angle of pair's of straight line is, $x^2 - 4xy + y^2 = 0$ (c) 45° (a) 30° (d) 90° (b) 60° **164.** Find the angle between pairs of straight line, $x^2 - 2axy + (a^2 - 1)y^2 = 0$ (a) $\tan^{-1}(2/a^3)$ (b) $\tan^{-1}(2/a)$ (c) $\tan^{-1}(2/a^2)$ (d) None of these **165.** Find the angle between pairs of straight line $(x^2 + y^2) \sin^2 \alpha = (x \cos \theta - y \sin \theta)^2$: (a) α (d) None of these (b) 2α (c) 3a **166.** Find the maximum value of K for which the equation $2x^2 - xy + Ky^2 = 0$ represents two real lines is : (b) $K < \frac{1}{8}$ (c) $K \leq \frac{1}{8}$ (a) $K \ge \frac{1}{2}$ (d) None of these **167.** If the equation $6x^2 - 4xy + ay^2 = 0$ represents of perpendicular to the line then find the value of a is : (a) 6 (b) – 6 (c) 5 (d) None of these **168.** Find the angle between the pairs of straight line, $x^2 + 2xy \cot \theta - y^2 = 0$ (b) 60° (a) 45° (c) 90° (d) None of these **169.** Find the angle between the pairs of straight line, $x^2 + 2xy \sec \phi + y^2 = 0$ is : DDATIMITAS (NEAD COLNEL CANDOLICE STATION ALL ATTABAD) Mob. 7800731619

10

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

(a) 2¢	(b)	(c) \ \ \ \ /2	(d) None of these
170. The angle bisector of lir		(*) *	
(a) $x^2 + y^2 = 0$	(b) $x^2 - y^2 = 0$	(c) $x^2 + 2y^2 = 0$	(d) None of these
171. Find the equation of coo	ordinate is :		
(a) $x = 0$	(b) $y = 0$	(c) $xy = 0$	(d) $xy = 1$
172. The pairs of straight lin	he $x^2 - 2pxy - y^2 = 0$ and pairs	of straight line $x^2 - 2q xy - y^2$	= 0 is angle bisector to each other is:
		1 1 1	1 1
(a) $pq = -1$	(b) $pq = 1$	(c) $\frac{1}{p} + \frac{1}{q} = 1$	(d) ${p} = 0$
173. If $a + b = 0$ the pairs of	of straight line $ax^2 + 2bxy + by$	$r^2 = 0$ is angle between is :	
(a) 90°	(b) 60°	(c) 27°	(d) 180°
174. If pairs of straight line	$2x^2 + 5xy + 3y^2 + 7y + 4 = 0$	the angle between $\tan^{-1}m$ then	n find the value of <i>m</i> is :
1		7	
(a) $\frac{1}{5}$	(b) 1	(c) $\frac{7}{5}$	(d) 7
-			
	<u>C</u>	IRCLE	
	e of circle $x^2 + y^2 + 4x + 2y + $		
(a) 2 unit, $(-2, -1)$	(b) $3 \text{ unit } (-2, -1)$	(c) 2 unit, $(2, 1)$	(d) None of these
(a) $x^2 + y^2 + 2x + 4y =$	f circle $x^2 + y^2 = 10 x$. Then the formula $x^2 + y^2 = 10 x$.	(b) $x^2 + y^2 + 2x - 4y =$	
(c) $x^2 + y^2 - 2x + 4y =$		(d) $x^2 + y^2 - 2x - 4y =$	
-	x-axis and cut an intercept on	· •	
	(b) $x^2 - y^2 = K^2$ - $6y + \lambda = 0$, touches <i>x</i> -axis, t		(d) None of these
(a) 1	(b) 2	(c) 3	(d) 4
	$-2ax + c = 0$ and $x^2 + y^2 + 2ax$		
1 1 1	1 1 1	1 1 1	
(a) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	(c) $\frac{a^2}{a^2} - \frac{b^2}{b^2} = \frac{a}{c}$	(d) None of these
180. The length of chords of	cuts by the circle $3x^2 + 3y^2 +$	14x + 10y + 8 = 0 on the axis	s are :
10 2	5 2	10 1	8 5
(a) $\frac{10}{3}, \frac{2}{3}$	(b) $\frac{5}{3}, \frac{2}{3}$	(c) $\frac{-3}{3}, \frac{-3}{3}$	(d) $\frac{8}{3}, \frac{5}{3}$
181. The centre of circle 4.	$x^2 + 4y^2 - 10x + 5y = 0$ is :		
(5 - 5)	(b) $\left(\frac{-5}{4}, \frac{5}{8}\right)$	(c) $\left(\frac{4}{5}, \frac{-8}{5}\right)$	$(-4 \ 8)$
(a) $\left(\frac{5}{4}, \frac{-5}{8}\right)$	(b) $\left(\overline{4}, \overline{8}\right)$	(c) $\left(\frac{1}{5}, \frac{1}{5}\right)$	$(d)\left(\frac{-4}{5},\frac{8}{5}\right)$
182. The distance between	the centres of two circles, x^2	$+ y^2 + 4x + 6y + 1 = 0$ and x	$x^2 + y^2 + 6x + 4y + 1 = 0$ is :
(a) 1	(b) $\sqrt{2}$	(c) 2	(d) 4
		660	
	r		
$\overline{\mathbf{v}}$			

				ANS	WER	RS			
1	2	3	4	5	6	7	8	9	10
a	b	d	a	b	С	d	c	a	d
11	12	13	14	15	16	17	18	19	20
b	c	a	a	a	С	a	b	b	a
21	22	23	24	25	26	27	28	29	30
d	d	d	b	c	b	a	b	d	d
31	32	33	34	35	36	37	38	39	40
b 41	C 12	a 42	a	C	a	b	d	d 10	с 50
41 h	42	43 h	44	45	46	47	48 h	49 b	50
b 51	d 52	b 52	C 54	С 55	a 56	d 57	b 59	b 50	C C
51 d	52	53	54 d	55 d	56	57	58	59	60
d 61	с 62	a 63	d 64	d 65	с 66	с 67	с 68	a 69	с 70
01 C	02 a	03 d	04 b	05 b	oo d	d	08 d	69 d	70 d
с 71	а 72	u 73	0 74	10 75	u 76	u 77	u 78	u 79	u 80
b	d	73 C	л ч а	73 b	c	a	c	c	a
81	u 82	83	а 84	85	c 86	а 87	88	89	a 90
a	b2	a	a	c	c	a	a	d	c
u 91	92	u 93	u 94	95	96	u 97	u 98	99	100
d	c	a	a a	a	c	a,c,d	a,d	b,c	d
101	102	103	104	105	106	107	108	109	110
b	b	с	c	с	С	d	c	b	d
111	112	113	114	115	116	117	118	119	120
d	c	a	a	d	c	b	d	с	c
121	122	123	124	125	126	127	128	129	130
a	d	b	d	c	с	b	a	a	d
131	132	133	134	135	136	137	138	139	140
c	c	a	a	с	d	a	c	a	a
141	142	143	144	145	146	147	148	149	150
a	b	a	b	b	b	a	b	b	b
151	152	153	154	155	156	157	158	159	160
b	a	b	Ь	b	c	a	С	b	b
161	162	163	164	165	166	167	168	169	170
b	b	b	c	b	b	b	c	b	b
171	172	173	174	175	176	177	178	179	180
-C	a 192	a	a	a	d	c	d	a	a
-181	182 b								
a	b								

DDAILMIAG (NEAD COLNEL CANDOLICE STATION ALLAUA BAD) Mob. 7800731619